Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 118: e230081, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1521243

ABSTRACT

BACKGROUND Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.

2.
Mem. Inst. Oswaldo Cruz ; 116: e210247, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1356484

ABSTRACT

BACKGROUND Mycolicibacterium fortuitum is an opportunistic pathogen associated with human and animal infection worldwide. Studies concerning this species are mainly represented by case reports, some of them addressing drug susceptibility with a focus on a specific geographic region, so there is a gap in relation to the global epidemiological scenario. OBJECTIVES We aimed determine the global epidemiological scenario of M. fortuitum and analyse its traits associated with pathogenicity. METHODS Based on publicly available genomes of M. fortuitum and a genome from Brazil (this study), we performed a genomic epidemiology analysis and in silico and in vitro characterisation of the resistome and virulome of this species. FINDINGS Three main clusters were defined, one including isolates from the environment, human and animal infections recovered over nearly a century. An apparent intrinsic resistome comprises mechanisms associated with macrolides, beta-lactams, aminoglycosides and antitubercular drugs such as rifampin. Besides, the virulome presented Type VII secretion systems (T7SS), including ESX-1, ESX-3, ESX-4 and ESX-4-bis, some of which play a role on the virulence of Mycobacteriaceae species. MAIN CONCLUSIONS Here, M. fortuitum was revealed as a reservoir of an expressive intrinsic resistome, as well as a virulome that may contribute to its success as a global opportunist pathogen.

3.
Mem. Inst. Oswaldo Cruz ; 114: e180348, 2019. tab, graf
Article in English | LILACS | ID: biblio-976242

ABSTRACT

BACKGROUND Shared traits between prokaryotes and eukaryotes are helpful in the understanding of the tree of life evolution. In bacteria and eukaryotes, it has been shown a particular organisation of tRNA genes as clusters, but this trait has not been explored in the archaea domain. OBJECTIVE Explore the occurrence of tRNA gene clusters in archaea. METHODS In-silico analyses of complete and draft archaeal genomes based on tRNA gene isotype and synteny, tRNA gene cluster content and mobilome elements. FINDINGS We demonstrated the prevalence of tRNA gene clusters in archaea. tRNA gene clusters, composed of archaeal-type tRNAs, were identified in two Archaea class, Halobacteria and Methanobacteria from Euryarchaeota supergroup. Genomic analyses also revealed evidence of the association between tRNA gene clusters to mobile genetic elements and intra-domain horizontal gene transfer. MAIN CONCLUSIONS tRNA gene cluster occurs in the three domains of life, suggesting a role of this type of tRNA gene organisation in the biology of the living organisms.


Subject(s)
Humans , RNA, Transfer/analysis , Archaea/classification , Euryarchaeota/virology , Plasmids , Haloarcula
4.
Mem. Inst. Oswaldo Cruz ; 112(7): 514-516, July 2017. graf
Article in English | LILACS | ID: biblio-841814

ABSTRACT

The genus Mycobacterium is highly diverse and ubiquitous in nature, comprehending fast- and slow-growing species with distinct impact in public health. The plasmid-mediated horizontal gene transfer represents one of the major events in bacteria evolution. Here, we report the complete sequence of a 160,489 bp circular plasmid (pCBMA213_2) from an atypical and fast-growing environmental mycobacteria. This is a unique plasmid, in comparison with the characterised mycobacteria plasmids, harboring a type IV-like and ESX-P2 type VII secretion systems. pCBMA213_2 can be further explored for evolutionary and conjugation studies as well as a tool to manipulate DNA within this bacteria genus.


Subject(s)
Humans , Plasmids/genetics , DNA, Bacterial/genetics , Molecular Sequence Data , Type VII Secretion Systems/genetics , Nontuberculous Mycobacteria/genetics , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL